

Final Group Report – TripTailor
“Plan, share, and explore – your personalized adventures, tailored to perfection”

Written for:

Dr. Raja Manzar Abbas, PhD., M.Sc., B.Sc.,

Professor, Principal Investigator

Faculty of Engineering and Applied Sciences

Memorial University of Newfoundland

Mr. Alam Shahbad, B.Eng,

Teaching Assistant, M. Eng Student

Faculty of Engineering and Applied Sciences

Memorial University of Newfoundland

Contents
Team ... 4

Introduction ... 4

Technologies ... 5

Front-end ... 5

Structure .. 5

Languages and Tools .. 5

Back-end ... 6

Structure .. 6

Languages and Tools .. 6

Database .. 7

Database Initialization and Connection Management ... 7

Table Structure and Schema ... 8

Table Relationships ... 2

Project management .. 3

Testing .. 2

CI/CD .. 2

Services ... 3

Main Service ... 3

Overview ... 3

Database Management .. 3

REST API Exposure ... 3

Data Packing ... 3

Server Startup and Workflow ... 3

Authentication Service .. 4

Overview ... 4

Signup ... 4

Sign In ... 5

Profile Service ... 6

Overview ... 6

Profile Creation/Update .. 6

Itinerary Service .. 8

Overview ... 8

Itinerary creation ... 8

Itinerary retrieval .. 8

Feed Service .. 9

Overview ... 9

Feed Creation .. 9

Tag-Based Filtering .. 10

Search Service ... 11

Overview ... 11

Functionality and Querying Process ... 11

Save Service .. 12

Overview ... 12

Core Functionality .. 12

Endpoints and Functionalities ... 13

Retrieval Operations ... 13

Modification and Deletion Operations .. 13

Creation and Update Operations ... 13

Design principles .. 14

Single Responsibility Principle (SRP) .. 14

Open/Closed Principle (OCP) ... 14

Liskov Substitution Principle (LSP) ... 14

Interface Segregation Principle (ISP) ... 14

Dependency Inversion Principle (DIP) ... 14

Challenges ... 2

Database Challenges ... 2

Backend Challenges .. 2

Frontend Challenges ... 2

Conclusion .. 3

Team

Jordyn O’Brien Abdulaziz Turonov

Noah Colbourne Miguel Pond

Léo Gilbert Mitch Roberts

Ally Reid Naomi Pierce

Waleed Mannan Khan Sherwani

Introduction

TripTailor is a platform designed to revolutionize the way people plan and share travel experiences. It aims

to simplify the travel planning process by combining personalization, community-driven content, and

intuitive features. The primary objective of the project is to provide users with a seamless way to create,

share, and explore customized trip itineraries tailored to their unique interests, demographics, and budgets.

The platform allows users to create itineraries that function like social media posts. These itineraries include

all essential details such as destination, events, timings, and budget. To ensure they are discoverable, an

intuitive tagging system allows users to categorize itineraries based on key attributes like destination,

activity type, activity level, and travelers. This system not only enhances search functionality but also helps

users easily find itineraries and events that align with their preferences.

Overall, TripTailor is designed to streamline the travel planning process, making it more efficient and

tailored to individual needs. The combination of personalization, community engagement, and streamlined

functionality ensures that travel planning becomes an enjoyable, collaborative, and highly tailored

experience.

Technologies

Front-end

Structure

The frontend of TripTailor follows a microservice-based structure, where each major feature or

functionality is implemented as an independent service, like the backend architecture. Key services in the

frontend include components for user authentication, itinerary creation, search, tag filtering, profile

management, and feed display. This modular approach ensures that each feature is self-contained and can

function independently while adhering to a unified design system, maintaining consistent user experience

across the application. By decoupling the frontend into individual services, we made development, testing,

and debugging more efficient. For instance, the itinerary grid and navigation bar profile components were

built as standalone modules, interacting with the backend through clearly defined APIs. This structure also

minimizes the risk of system-wide failure; if one service encounters an issue, the rest of the front end can

continue functioning. Furthermore, this architecture ensures the frontend is highly scalable, as each service

can be updated, replaced, or expanded independently without disrupting the overall application.

Languages and Tools

React.js

React was chosen for its support of component-driven and microservice-friendly development. Its modular

structure allowed us to build isolated, reusable components for services like itinerary grids, navigation bar,

and modals. React’s virtual DOM ensures efficient rendering, which is essential for a highly interactive

application like TripTailor.

JavaScript (ES6)

JavaScript served as the primary language for implementing the frontend logic. ES6+ features such as arrow

functions, async/await, and destructuring were used to write modern, concise, and efficient code. JavaScript

powered dynamic user interactions, API calls, and state management for each microservice.

CSS

CSS was used to style each service independently while maintaining a cohesive design across the

application. Modular CSS techniques allowed for isolated styles within each service, ensuring that changes

in one module didn’t affect others. Responsive design principles ensured the application performed well on

various devices.

Back-end

Structure

The backend of TripTailor follows a microservices structure, where each important feature is split into

different services and responsible for their part of the backend logic. The services featured in TripTailor

back-end include the main, authentication, profile, search, itinerary, feed and save. The roles of each service

will be discussed further within the report in detail.

The primary motivator for choosing microservice architecture was the decoupling of the backend. This

allows for different features of the application to be stand alone and independent, making testing and

integrating easier as well as keeping the application more failure proof, as because each service is

independent if one fails, the rest of the application does not crash, isolating the error. The services are

connected to a single overarching database, which in the future, if demand necessitates, could be scaled

into multiple different databases for different services, turning the project into a true microservices

architecture.

Languages and Tools

Golang

The language that was chosen for the backend was Golang or Go. This was done to due to Go’s significant

performance advantage compared to regular backend languages such as Python, Ruby, JavaScript, C# and

Java. However, the syntax of Go is also less complex compared to a language like C++. Thus, due to ease

of syntax and incredible performance, Go was chosen. Additionally, core features of Go are the goroutines,

which allow for easy and simple parallelism of process, allowing for the backend and consequently rest of

the TripTailor application to be scalable.

Gin

Go’s Gin framework was chosen for handling HTTPS requests and building RESTful APIs. This was done

due to quality of life and ease of development reasons, as the framework out of the box comes in with

methods for creating REST API. Further since Gin is an official Go framework, the methods that are

contained within the framework not only are the most used methods for backend development but also are

clean and performant, which once again allows the backend to be scalable.

Docker

Docker was chosen as a tool to keep the backend contained in one place for ease of development. The other

main motivator was to make sure all services are run in an identical environment, in the same operating

system, with the same package and language versions, which allows developers, who are writing code on

different machines, to run the backend in an identical manner. Each service has its own docker container,

where the service is run. This allows for easier troubleshooting and testing of code, making the backend

more error proof and once again keeps the backend scalable, especially when it comes to deploying the

backend in cloud services, which utilize Kubernetes and docker for environment control, allowing for a 1

to 1 transition from development to production.

Database

Database Initialization and Connection Management

The database system is built using PostgreSQL, a powerful, open-source relational database, and is

deployed in a Docker container to ensure portability and ease of setup. Additionally, PgAdmin is utilized

as a graphical user interface for database management, providing an accessible way to interact with and

monitor the database.

PostgreSQL serves as the backbone of the application’s data management. It was chosen due to its relational

structure and extensibility, all of which complement a normalized schema and ensure data consistency,

while offering advanced features. In addition, PostgreSQL’s JSONB Support allows storage and querying

of semi-structured data, such as arrays, which enables very efficient queries.

PgAdmin was included in the setup for management, to provide Visualization Tools and a User-Friendly

Interface, to allow us to inspect and debug data handling mismatches.

Upon deployment, database tables and schemas are initialized using custom scripts. Docker ensures the

migration process runs seamlessly during container startup, maintaining schema consistency.

Through customized scripts, the database connection is established, and the connectivity is verified. Given

that the provided connection string is valid, and the database is accessible, the application signals readiness

for subsequent operations. A connection object is reused throughout the application to avoid redundant

connections and is properly closed at the end to prevent resource leaks.

Table Structure and Schema

The application consists of seven core tables:

Users Table

The users table stores essential information about

the platform's users. It enables the management

of user profiles, social interactions, and their

contributions to the system.

Key features include social attributes include

Followers and Following, both stored as arrays

for fast lookups, Profile customization, which is

supported through ProfileImage and

CoverImage, referencing the images table, and

user contributions tracked through the Boards and

Posts field.

Posts Table

The posts table records user-generated content,

enabling interaction through likes and comments.

Functionalities include creating a link between

travel plans and user posts association with links

to an Itinerary, categorization linking using

Boards, and finally enabling user engagement

using Likes and Comments.

Boards Table

The boards table organizes posts into thematic

collections, akin to virtual bulletin boards.

Itineraries Table

The itineraries table stores travel plans,

connecting them with events and related posts.

Events Table

The events table contains details of individual

activities within an itinerary. Events support

multimedia through EventImages, referencing

the images table, and are linked to ItineraryId,

ensuring activities are part of specific travel

plans.

Images Table

The images table stores multimedia assets for

various purposes across the application.

ImageData holds binary image content, while

Metadata provides context, such as resolution or

associated entities.

Comments Table

The comments table manages user feedback and

discussions related to posts or itineraries.

Table Relationships

The Tables are connected with the relationships as outlined below:

Project management

For this project Agile Scrum methodologies were used to manage the project. Jira was used to manage a

backlog of tasks and week-long sprints were used.

Jira

The team utilized Jira as the primary tool for

managing the project backlog and tracking

progress. Tasks were categorized by priority and

complexity, and user stories were created to

ensure each task was tied to a specific feature or

functionality.

Discord

Communication was facilitated through Discord,

which provided a centralized platform for

discussions, announcements, and quick issue

resolution.

GitHub

The codebase was managed on GitHub, with pull

requests and code reviews ensuring quality and

consistency across the development process.

Confluence

Documentation, including specifications and

meeting notes, was maintained on Confluence to

keep everyone informed and aligned.

Testing

Performing Testing on new code was performed manually, following strict adherence to a written

procedure, utilizing White Box testing. New functionalities under test were prodded for handling various

valid and invalid inputs, and then the associated log output of the container would be contrasted against the

stored database values.

An enumerated procedure for testing, aligning with common patterns users will perform in sequence caught

many emergent bugs that only occurred when trying edge cases, attempting to ‘break’ the application, and

stacking various tests in different orders.

These faults were routed and eliminated fairly frequently. Requiring multiple successful Pull-Request

reviews aided in fault detection. Approaching the website as a user and being aware of testing biases,

documenting errors, and precise replication steps, allowed manual testing to be as successful as it was.

CI/CD

CI/CD was implemented via GitHub Actions and the pipeline performs the following: building and

launching the application successfully, running all implemented unit tests in the Golang backend, and a

Virtual Code Review that would notice many well-known poor patterns and then successfully, selected for

manual testing.

The pipeline begins with a comprehensive build process. This step compiles and packages the application

to ensure all components are functional and compatible. Docker ensures that every service operates in a

consistent environment, eliminating issues caused by varying dependencies across machines. Successfully

completing this step guarantees that the application is free of critical build-time errors and is ready for

subsequent testing phases.

Following the build, the pipeline executes all unit tests implemented for the Golang backend. These tests

validate the core functionalities of individual modules, such as user authentication, itinerary management,

and API endpoint responses. The unit tests also cover edge cases and error scenarios, ensuring the backend

handles unexpected inputs gracefully. Automated testing is a vital stage in maintaining the reliability and

performance of the system as new features are added. Any test failures result in immediate pipeline halts,

preventing defective code from being integrated further.

In addition to testing, the CI/CD pipeline includes a virtual code review step. This process leverages

automated static code analysis tools to evaluate the code for known anti-patterns, inefficiencies, and

violations of best practices. The virtual review highlights issues such as unsafe concurrency practices,

unoptimized queries, or unused variables in the Golang backend. The findings are summarized into reports,

enabling developers to address potential problems proactively before merging changes.

This was sufficient for initially filtering out all PRs that have glaring faults and allowing the rest to be

manually tested.

Services

Main Service

Overview

The Main-service is a core backend component, serving and facilitating the essential operations of the

application, including database management, data population, and the provision of RESTful endpoints for

client interactions.

Database Management

One of the primary responsibilities of the Main-service is managing the PostgreSQL database. Upon startup,

the service establishes a connection to the database container using a preconfigured connection string,

which is critical for ensuring all subsequent operations are executed seamlessly.

REST API Exposure

The Main-service exposes several RESTful endpoints to facilitate interaction with the database and backend

functionality. Key endpoints include /users, which handles user-related requests, and /images/, which

manages image retrieval operations. A test endpoint, /hello, serves as a basic health check to confirm the

server's availability.

Data Packing

A significant feature of the Main-service is its ability to pack the database with predefined datasets. Utility

functions defined in db_packing_utils.go enable the service to process JSON files and local

directories, transforming raw data into structured database entries. For instance, the PackUsersFromJSON

function reads a JSON file containing user data, parses the records, and inserts them into the user’s table.

Similarly, PackImagesFromLocal reads image files from a specified directory, converts them into byte

arrays, and uploads them to the database with associated metadata.

Server Startup and Workflow

The execution of the Main-service begins with main.go. Upon startup, the service establishes a connection

to the database using a connection string, ensuring the database is ready for subsequent operations. After

successful connection, the service initializes the database by deleting existing tables, creating new ones,

and seeding data. Once the database is set up, the service registers HTTP handlers for various endpoints

and starts the HTTP server on port 8080.

Authentication Service

Overview

The authentication service handles the backend operations of signup and signin features of the application.

The authentication service makes sure that only authenticated users are allowed within the application. Non

authenticated users are restricted from accessing any pages or features of TripTailor other than the signup

and signin feature. This ensures the security of TripTailor and disallows any unwanted personnel from

accessing the application.

Signup

The signup page is responsible for creating user credentials for accessing TripTailor. As can be observed

from the above figure The signup pages take the following user credentials, username, email, password

confirm password and date of birth. The username is the primary user identifier at the backend, the email

is taken with the intent of in the future implementing email verification and password recovery steps for

the authentication service to bolster the app security. The password field has several requirements that need

to be met for a password to be considered valid and secure.

The password must be 8 characters long, should include at least 1 upper case, one lower case letter, a

number and a special character, like an exclamation mark, an underscore and so on. These password

requirements ensure that hackers cannot simply guess the password and enter. The confirm password field

makes sure the user repeats their password and is satisfied with it. The date of birth field is taken for later

usage by the application. Once the fields are completed and the user presses the continue button, submitting

their information. This sends the data through a REST API, to the authenticated service “/signup” endpoint,

the service is currently set up to listen on port 8081.

Once the backend receives the user data, the password is encrypted using Go’s bcrypt method, to turn the

password into an encrypted hash, which gets stored in the database along with the rest of the user

information. The data is stored in the users table in the database. Further the username is taken and using

JWT standard and the username, an encrypted access token is created. Once the backend process is

completed without errors a confirmation message, with the 200 status and the access token are sent as the

response of the API. The access token is stored within the local storage in the client, which allows the user

to access the application. At each page and request throughout the application, the access token is sent to

the backend in order to verify the validity of the users, if found invalid, backend sends a 500 unauthorized

response, which clears the local storage to get rid of the token and navigates the user to the signin page.

Sign In

The sign in page handles the user sign in. The page has a username and password fields. Once the sign in

form is submitted, the data is sent to the /signin endpoint within the authentication service in the backend.

The username is extracted, and the provided password is hashed using Go’s bcrypt, after which the hashed

password is compared to the hashed password stored in the database for the given username. If the

passwords match, the 200 status, confirmation message and the access token, which is used and created the

same way as described in the signup section, are sent back to the client as the backend response. After

which the token is stored in local storage and the user is navigated to the home page of TripTailor.

Profile Service

Overview

The Profile Service handles the creation and updating of user profiles. Users can add their name, languages,

and country of residence to their account. Users also select tags for topics they are interested in.

Profile Creation/Update

When creating a profile, a user will enter their name to display it on their profile; this is not a mandatory

field. Users must also select tags for trip topics they are interested in; this is mandatory, and users must

select at least three tags.

Users must then select their country of residence, as this is a mandatory field for profile creation, and users

must also select the language/languages they speak as this is a mandatory field.

After all this is entered/selected, users can press continue, and then profile creation will be complete.

Now if a user would like to update their profile information, like if they want to add or remove tags or

change their name, country of residence or languages spoken, they would then go to the account settings

page, and a screen just like the images above will appear and you can change all of your info just like when

creating a profile, then press save and the user's info will be update.

Itinerary Service

Overview

The itinerary service handles the creation, storage and retrieval of itineraries from the database. Users can

create and post their own itineraries as well as search and view itineraries posted by other users. The

itinerary service is needed to ensure all of this can be done.

Itinerary creation

When the user fills out the itinerary creation page and press submits an API will handle the transfer of

information from the front end to the backend. The backend will parse the information accordingly and add

the itinerary, events and photos to the corresponding table in the database.

Itinerary retrieval

The itinerary service also handles the retrieval of itineraries for both the feed and displaying the user’s

posted itineraries. An API was created to request that the backend retrieves itineraries. When a request is

made the backend will get the necessary itineraries and send them to the front end for them to be displayed.

Feed Service

Overview

The feed service is responsible for displaying filtered itineraries based on the users selected tags within the

profile creation screen. It will fetch data and update the UI in an organized format, as shown below

Feed Creation

Upon loading into the homepage, the process begins by gathering itineraries from various users via the

backend services. Since each itinerary is associated by multiple tags, when the user selects multiple tags (ie

“Teenagers” and “Shopping”), the service will filter the itineraries to show only the matching ones related

to the users tags. This is done through a series of API calls to retrieve the users tags, and related itineraries,

followed by the data on the front end. Once this is done, the filtered itineraries are then displayed at the

front end. The feed service will ensure that it remains up to date, even when changing user tags, the feed

service will automatically update its filtered itineraries based upon the new tags.

Tag-Based Filtering

Tag-based filtering is a core feature of the feed service. This allows users to customize their experience in

TripTailor by selecting specific tags that match their interests. Since each itinerary is associated with more

than one tag, you can select multiple tags to filter at the top of the page, shown in figure # in the red box

The process starts once the user clicks a tag they want to filter by. which is then added to a list of selected

tags. The feed service will then send a request to the backend, with the selectee tags, to then find all the

matching itineraries. Once the data is retrieved, the system will update the feed to display only the filtered

results. If multiple tags are selected, the system will use AND logic to ensure that only the itineraries with

all the selected tags are displayed.

Search Service

Overview

The Search Service is a backend service that is designed to enable users to search for itineraries based on a

search bar input, as well as an optional price input. The service contains a single endpoint: /search, where

users send HTTP GET requests containing their search input. The service will then dynamically generate a

query to retrieve and rank itineraries based on their relevance to the users search. Building on top of the

itinerary data type, the search service uses a ScoredItinerary which is effectively an itinerary with an

additional attribute called TotalMatchScore to provide users with itineraries that are most relevant to their

search.

Functionality and Querying Process

The query building process begins by comparing the entire search string against the ‘Title’ field in the

itineraries table, to look for exact matches to the search. This is the highest weighted match and will give

the largest increase to the total match score. Then, the search string is tokenized, essentially breaking the

string down into individual words or sub-strings separated by spaces. Each token will then be compared

against the ‘Title’ field again for partial matches, as well as the City, Country, Username, Tags, and

Languages fields.

Each match in any of these comparisons between token and field will contribute to the total match score.

Any itineraries with TotalMatchScore less than 2 will be excluded from the results. Results are sorted in

descending order of TotalMatchScore from highest to lowest. The price input acts as a filtering condition

meaning that any itineraries with price greater than user specified amount will be excluded from the results.

Once the query is constructed, it is executed against the PostgreSQL database. The service retrieves the

results, which include the itinerary details and the calculated score. These results are then formatted as

JSON and returned to the frontend. This design allows users to explore itineraries intuitively, allowing

flexibility with their search and yielding results that closely match their input.

Save Service

Overview

The Save Service is a dedicated backend service designed to manage all board-related operations within

the application. It provides a set of RESTful endpoints for handling boards, posts, itineraries, and events.

Built using the Gin framework in Go, this service interacts with the PostgreSQL database to retrieve,

modify, and manage data related to user-saved content, such as boards and their associated posts.

Core Functionality

The Save Service focuses on providing comprehensive support for managing boards, which serve as user-

curated collections of posts and itineraries. It includes operations such as retrieving boards, adding posts to

boards, editing board details, and deleting boards or disassociating individual posts from them. These

functionalities enable users to personalize their experience by organizing content in a way that suits their

preferences.

Pressing `Save` allows us to save the Itinerary to either an existing, or new Board, as seen below:

This results in:

Endpoints and Functionalities

The Save Service exposes several RESTful API endpoints, each designed to perform specific tasks. These

endpoints are registered through the RegisterRoutes function, which binds them to their corresponding

handler functions. The Save Service registers HTTP handlers for all its endpoints and starts the HTTP server

on port 8086. The key endpoints include:

Retrieval Operations

• GET /boards: Fetches boards associated with a specific user, identified by their username. This

endpoint allows users to view all their curated collections.

• GET /posts: Returns posts linked to a particular board, identified by boardId. This enables users to

view all content within a specific board.

• GET /itineraries: Retrieves the itinerary linked to a given postId, providing detailed information

about the itinerary associated with the post.

• GET /events: Fetches events related to a specific itinerary, identified by itineraryId. This allows

users to explore activities linked to their saved itineraries.

Modification and Deletion Operations

• DELETE /boards/:boardId/posts/:postId: Removes a specific post from a board. This endpoint

helps users curate their collections by removing unwanted content.

• DELETE /boards/:boardId: Deletes an entire board, allowing users to declutter their saved content.

Creation and Update Operations

• POST /addboard: Adds a new board to the database. Users can create new collections to organize

their saved content effectively.

• POST /addboardpost: Adds a specific post to an existing board. This enables users to populate their

boards with relevant content.

• POST /editboard: Updates the name and description of an existing board. This feature allows users

to personalize and update their collections as needed.

Design principles

Single Responsibility Principle (SRP)

Each microservice in TripTailor is designed to

handle a single, well-defined responsibility. For

example, the Authentication Service handles user

sign-in and sign-up, while the Profile Service is

dedicated to managing user profiles. This

modular approach prevents a service from

becoming overly complex and simplifies

maintenance and updates.

By adhering to SRP, the code within each

microservice is focused and easier to read,

making it straightforward for new developers to

understand the logic and make modifications

without unintended side effects.

Open/Closed Principle (OCP)

Extensibility without Modification: The

application is designed so that new functionality

can be added without changing existing code. For

example, new itinerary features or additional user

attributes can be introduced by adding new

services or expanding existing ones with minimal

disruption.

Each microservice operates independently, which

aligns with OCP by allowing for the addition of

new endpoints or services without altering the

existing ones. This practice ensures that the

platform can evolve as the user needs change or

as new technologies emerge.

Liskov Substitution Principle (LSP)

Substitution of Components: TripTailor ensures

that subclasses or derived services can replace

their parent classes or services without affecting

the behavior of the application. For instance, if a

new implementation of a service is developed to

handle a specific task more efficiently, it can be

swapped in without altering the rest of the system.

The design allows various components, such as

the Search Service and Feed Service, to interact

with each other smoothly. This principle is

particularly important for maintaining the

integrity of data flow across services and

ensuring that code modifications do not introduce

inconsistencies.

Interface Segregation Principle (ISP)

Focused Interfaces: The design avoids "fat"

interfaces that force components to implement

unnecessary methods. Each service in TripTailor

exposes endpoints that are specific to its

functionality, and these are designed to meet the

precise needs of their respective clients. This

minimizes the impact of changes and simplifies

the integration process.

By keeping interfaces specialized, developers

working with each service can work more

efficiently, understanding only the relevant parts

of the API without being burdened by unrelated

methods or complex interactions.

Dependency Inversion Principle (DIP)

Decoupled Services: TripTailor’s backend architecture promotes a high level of decoupling between

services, following the DIP by depending on abstractions (e.g., interfaces) rather than concrete

implementations. For example, the Save Service can be extended or replaced with minimal changes, as it

interacts with higher-level data access layers instead of direct database calls.

The application uses dependency injection to manage dependencies between services, allowing for easier

testing and more flexible configurations. This approach supports the construction of mock services during

development and testing, aiding in more robust code quality and application resilience.

Challenges
Developing TripTailor involved overcoming a variety of challenges across the database, backend, and

frontend layers. Each part of the system required addressing specific obstacles to ensure a seamless,

efficient, and scalable application. Here is a summary of the main challenges and how they were tackled:

Database Challenges

Data Consistency and Synchronization: One of the main challenges in building TripTailor was ensuring

data consistency across the various microservices that needed access to shared data. This required careful

planning for data replication and synchronization, especially when dealing with user profiles and

itineraries that could be modified by multiple services simultaneously.

Complex Queries: Services like the Search Service demanded complex queries to pull and process data

efficiently. We solved this by using well-indexed database tables and designing efficient data models that

could handle diverse and concurrent query loads without bottlenecks.

Backend Challenges

Microservices Communication: A core challenge was establishing reliable communication between

microservices, particularly when handling requests that required data from multiple sources.

Service Orchestration: Managing the flow of data and ensuring proper orchestration across services was

complex. The solution involved integrating API gateways and developing a robust service registry to

handle service discovery, versioning, and request routing effectively.

Error Handling and Fault Tolerance: Ensuring the system could gracefully recover from failures was a

significant challenge. We implemented fallback mechanisms and retry policies to handle service failures

and prevent cascading errors across the platform.

Frontend Challenges

User Experience Consistency: Designing an interface that worked seamlessly across different devices was

challenging. We used responsive design principles along with frameworks like React to create a

consistent experience. Testing across various screen sizes and devices was crucial for ensuring

accessibility and user satisfaction.

State Management: Handling state efficiently in a single-page application (SPA) was another challenge.

We chose to use state management libraries like Redux to manage the complex state of user interactions,

itinerary updates, and live feed updates, which required synchronization with backend services.

These challenges were met with a combination of strategic planning, technology selection, and rigorous

testing, resulting in a robust and scalable application. TripTailor’s success was defined by the seamless

interaction between database management, backend service orchestration, and frontend user interface

design, all working in harmony to deliver a top-notch user experience.

Conclusion

Developing TripTailor was a multifaceted process that required careful planning and execution at every

stage. By applying sound design principles, adhering to SOLID architecture, and addressing challenges

across the database, backend, and frontend, we were able to create a cohesive and user-friendly platform.

From ensuring data consistency and seamless microservice communication to building a responsive

interface that performs well across devices, each decision played a critical role in shaping the final product.

The project not only highlighted the importance of a well-structured system architecture and efficient data

handling but also underscored the value of collaboration among development teams to tackle complex

technical challenges. Through iterative development, rigorous testing, and adopting the right technologies,

TripTailor became a scalable, secure, and high-performance solution tailored for modern travel planning.

In conclusion, the experience gained from designing and building TripTailor has enriched our

understanding of building large-scale applications and provided insights into balancing user needs with

technical feasibility. It stands as a testament to how a well-executed blend of thoughtful design, robust

backend development, and polished frontend interfaces can create an application that users trust and enjoy.

Thank you very much :)

